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Introduction: Motivation

▣ Motivation

➢ The system involving multi-physics is difficult to analyze with high fidelity analysis.

➢ For example, difficulties associated with simulation of helicopter flight

• Aerodynamic challenges: Complexity of unsteady and vortical air flows

• Structural dynamic challenges: Long and flexible rotor blades

• Coupled physics of aerodynamics and structures

▣ Objective

➢ Develop an accurate but efficient analysis and design method for rotor blade.

Source: https://qph.ec.quoracdn.net/main-qimg-85267c6f4bb30dfa7bd5

e86ba427fa8f-c?convert_to_webp=true
Source: https://en.wikipedia.org/wiki/File:UH-60_2nd_Squadron,_2nd_Cavalry_Regiment_(cropped).jpg
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Introduction: Literature Review

▣ Literature Review for Rotor Design

➢ A comprehensive rotor design code

• CAMRAD (NASA Ames Research Center / U.S. Army, 1980)

– Lifting-line theory, Lifting-surface theory

• CAMRADII (Johnson Aeronautics,1994)

• UMARC (University of Maryland, 1990)

– FEM formulation + Quasi-steady 2-D strip theory

➢ CFD/CA coupling

• CAMRAD II, RCAS and UMARC started to include main rotor 3D-CFD coupling. (in 2000s)

• Hybrid solver: OVERFLOW + CHARM (by CDI, 2016)

Smith, Marilyn J., et al. "An assessment of CFD/CSD prediction state-of-th

e-art using the HART II international workshop data." 68th Annual Forum of 

the American Helicopter Society, Ft. Worth, TX. 2012.
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Introduction: Contributions

▣ Literature Review

➢ Adjoint-based shape optimization for static aeroelastic problem

• Kenway, Kennedy and Martins (U.Mich, 2014)

➢ Time Accurate approach with unsteady adjoint-based shape optimization of rotor (Dynamic FSI problem)

• Mishra, Mani and Mavriplis (Wyoming University, 2014)

• Contributions of th present study

- Time-Spectral form of fluid and structural equations of motion 

(steady form of governing equations)

- Steady adjoint formulation for unsteady, dynamic problems in time-spectral form.

- Fluid-structure interface (FSI) and coupled adjoint solution

1. Kenway, Gaetan KW, Graeme J. Kennedy, and Joaquim RRA Martins. "Scalable parallel approach for high-fidelity steady-state aeroelastic

analysis and adjoint derivative computations." AIAA journal 52.5 (2014): 935-951.

2. Mishra, Asitav, et al. "Time-dependent adjoint-based aerodynamic shape optimization applied to helicopter rotors." Rn 3 (2014): 2.
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Traditional FSI Approach

▣ Partitioned and Staggered Approach

➢ For the unsteady problems, physics of the problem limits the time step

Source: C. Farhat, M. Lesoinne, “Two efficient staggered algorithms for the serial and parallel solution of three-dimensional nonlinear transient aeroelastic 

problems”, Computational Methods in Applied Mechanics and Engineering, Vol. 182, 2000, Pg. 499-515 

Fluid: 

Computational Fluid

Dynamics

(CFD, R(W,x)=0)

Pressure Field

Displacement Field

Structure: 

Finite Element

Method

(FEM, S(U,x)=0)

𝑊𝑛: fluid state vector

𝑈𝑛: structural state vector

𝑥𝑛: position of grid point

𝑃𝑛: fluid pressure

𝑢𝑛: structural displacement

serial staggered 

partitioned approach

   

V
¶u

¶t
+ R(u) = 0

𝑀 ሷ𝒙 𝜓 + 𝐶 𝜓 ሶ𝒙 𝜓 + 𝐾 𝜓 𝒙 𝜓
= 𝐹(𝑥, ሶ𝑥, 𝜓)



8 8

   

V
¶u

¶t
+ R(u) = 0

V
u

VD u R u j N
j

N

N j

N

j

N
¶

¶t
+ + = = -( ) ( , )0 0 1…

  

   

V
¶u j

N

¶t
+ R(u j

N ) t= t j = 0 ( j = 0,… ,N -1)

• For collocation method, the equation should be satisfied at each time instance (Fourier collocation point) 

• Fourier collocation derivative in (physical) time space 

• Final form of the time-spectral equation in a time-domain and steady state ! 

U u u uN N

N

N= -( , , , )0 1 1…

  

VDNU + R(U) = 0,  where

(DN )lj =

1

2
(-1)l+ j cosec(

(l - j)p

N
)

0

:

:

ì

í
ï

î
ï

l ¹ 0

l = j, where

u u e j N t
T

N
jj

N

k

ikt

k N

N

j
j= = - =

=-

å~ ( , , ),
/

/

2

2

0 1…

~ ( / , , / )u
N

u e k N Nk j

N ikt

j

N

j= = - -
-

=

-

å
1

2 2 1
0

1

…

¶ul
N

¶t
= ikuk
k=-N /2

N /2-1

å eiktl (l = 0,...,N -1)

= eiktl

k=-N /2

N /2-1

å
ik

N
u j
Ne

-ikt j

j=0

N-1

å (l = 0,...,N -1)

=
1

N
ike

ik (t j-tl )

k=-N /2

N /2-1

å
æ

è
ç

ö

ø
÷u j

N

j=0

N-1

å (l = 0,...,N -1)

= DN( )
lj

j=0

N-1

å u j
N (l = 0,...,N -1)

  

   

Dtu
n =

0 d1 dN-1

2

-dN-1

2

-d1

-d1 0 d1 d2 -d2

d1 d2

æ 

è 

ç 
ç 
ç 
ç 
ç 

ö 

ø 

÷ 
÷ 
÷ 
÷ 
÷ 

u1

u2

uN

æ 

è 

ç 
ç 
ç 
ç 

ö 

ø 

÷ 
÷ 
÷ 
÷ 

…

-d
2

…

… …

…… 0

......
...

...
...

... ...
...

-d
1

Time Spectral Formulation (Fluids)
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Time Spectral Formulation (Structures)

▣ Dynamic Structural Analysis

➢ Governing equation

➢ First order ODE form
𝒙: nodal displacements

𝝍: azimuth angle (0  ~ 360)

𝑀 ሷ𝒙 𝜓 + 𝐶 𝜓 ሶ𝒙 𝜓 + 𝐾 𝜓 𝒙 𝜓 = 𝐹(𝑥, ሶ𝑥, 𝜓)

ሶ𝑦 𝜓 = 𝐴𝑦 𝜓 + 𝐵𝑓(𝜓)

where, 𝑦 𝜓 = 𝑥(𝜓)
ሶ𝑥(𝜓)

, 𝑓 𝜓 = 0
𝐹

, 𝐴 =
0 𝐼

−𝑀−1𝐾 −𝑀−1𝐶
, and 𝐵 =

0
𝑀−1
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Time Spectral Formulation (Structures)

▣ Dynamic Structural Analysis using Spectral Formulation

➢ State-vector form equation

ሶ𝑦 𝜓 = 𝐴𝑦 𝜓 + 𝐵𝑓(𝜓)

➢ Assuming the solution with a Fourier series

➢ The time derivative can be converted into a Matrix Vector product. It can be solved by applying pseudo-time 

stepping

𝜕𝑦𝑇𝑆
𝜕𝜏

+ 𝐷𝑁𝑦𝑇𝑆 − 𝐴𝑦𝑇𝑆 − B𝑓𝑇𝑆 = 0

𝑦 𝑡 = ෞ𝑦0 +෍

𝑛=1

𝑁𝐻

ෞ𝑦𝑐𝑛 cos𝜔𝑛𝑡 + ෞ𝑦𝑠𝑛 sin𝜔𝑛𝑡

𝑦𝑇𝑆 =

𝑦(𝜓0 + ∆𝜓)
𝑦(𝜓0 + 2∆𝜓)

⋮
𝑦(𝜓0 + 2𝜋)

where, 𝑓𝑇𝑆 =

𝑓(𝜓0 + ∆𝜓)
𝑓(𝜓0 + 2∆𝜓)

⋮
𝑓(𝜓0 + 2𝜋)

Spectral Method

❖ solution approximation

- Trigonometric (Fourier)

- Chebychev

- Legendre

❖ error minimization

- Galerkin

- Collocation

- Tau

𝜏: pseudo time
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Proposed FSI in Time-Spectral Formulation

▣ Time Spectral form of Governing Equations 

Fluid Equation Structural Equation

𝑉
𝜕𝒘𝒕𝒔

𝜕𝜏
+ 𝑉𝝎𝑫𝒘𝒕𝒔 + 𝑹 𝒘𝒕𝒔 = 0 𝜕𝒚𝒕𝒔

𝜕𝜏
+ 𝜔𝑫𝒚𝒕𝒔 − 𝑨𝒚𝒕𝒔 − 𝑩𝒇𝒕𝒔 = 0

𝑤𝑗
𝑘 𝑤𝑗

𝑘+𝑟 𝑤𝑗
𝑘+2𝑟 𝑤𝑗

𝑘+3𝑟

𝑃𝑗
𝑘+𝑟 𝑃𝑗

𝑘+2𝑟 𝑃𝑗
𝑘+3𝑟

𝑤𝑗
𝑘: fluid state vector

𝑢𝑗
𝑙: structural state vector

𝑥𝑗
𝑘: position of grid point

𝑃𝑗
𝑘: fluid pressure

𝛿𝑗
𝑘: structural displacement

Pressure Field

Displacement Field



12

TS FSI Validation: Sectional Airloads Comparison (CFD/CSD)

0 90 180 270 360
-100

-50

0

50 86.5% R

ft
-l
b
/f
t

0 90 180 270 360
-100

-50

0

50 96.5% R

10 90 180 270 360
-100

-50

0

50

Azimuth, degs.

ft
-l
b

/f
t

0 90 180 270 360
-100

-50

0

50

Azimuth, degs.

Fligh

t

Time-A

cc

Spectra

l

86.5% R
96.5% R

¼ -c

Time-Accurate (TA)

Flight

Spectral (TS)

Speed: 155 kts

Thrust:  17,500 lbs

0 90 180 270 360
-400

-200

0

200

400

600
86.5% R

lb
/f
t

0 90 180 270 360
-400

-200

0

200

400

600
96.5% R

0 90 180 270 360
-400

-200

0

200

400

600

Azimuth, degs.

lb
/f
t

0 90 180 270 360
-400

-200

0

200

400

600

Azimuth, degs.

Flig

ht

Time-Acc

Spectr

al

Pitching moment
Normal force

0 90 180 270 360
-50

0

50

0 90 180 270 360
-50

0

50

Azimuth, degs.

0 90 180 270 360
-50

0

50

100

lb
/f

t

Fligh

t

Time-A

cc

0 90 180 270 360
-50

0

50

100

Azimuth, degs.

lb
/f

t

Spectral

chord force

UR
UR

UR

C9017 (dynamic stall)UH-60A

C8534

with 7 harmonics 



13

Contents

I. Introduction 

II. Fluid-Structure Interaction in Time Spectral Form

III. Adjoint Sensitivity for Time Spectral Form

IV. Sensitivity Analysis Results

I. Conclusions



14

Sensitivities and Design

▣ Approach: Sensitivity Analysis for unsteady problems.

➢ Shape Optimization requires gradient with respect to a large number of design variables.

➢ Adjoint Method is extremely handy in such cases

➢ Disadvantage: For unsteady problems, physics residuals and adjoint variables need to be stored at each phy

sical time step→ Memory and time intensive.

N+1 Aeroelastic Simulations

With N design variables

1 Aeroelastic
Solution

1 Adjoint
Solution

+

Finite Difference Method

(FDM)

Adjoint Method

𝑓′ 𝑥 ≈
𝑓 𝑥 + ∆𝑥 − 𝑓(𝑥)

∆𝑥

(
𝜕𝑅

𝜕𝑤
)𝑇𝜆 = −

𝜕𝐼

𝜕𝑤
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Coupled Adjoint for Coupled Sensitivity Analysis

▣ Coupled Adjoint Analysis

➢ Gradient computation using adjoint method for a coupled FSI problem

➢ Objective function: 𝐼 = 𝐼(𝑤, 𝑦, 𝑥, 𝑏)

➢ Total derivative of objective function w.r.t design variables
𝑑𝐼

𝑑𝑏
=
𝜕𝐼

𝜕𝑏
+
𝜕𝐼

𝜕𝑤

𝜕𝑤

𝜕𝑏
+
𝜕𝐼

𝜕𝑦

𝜕𝑦

𝜕𝑏
+
𝜕𝐼

𝜕𝑥

𝜕𝑥

𝜕𝑏

➢ State equations for fluid and structural system and their derivatives w.r.t design variables

Fluid:  𝑅 𝑤, 𝑦, 𝑥, 𝑏 = 0 →
𝑑𝑅

𝑑𝑏
=

𝜕𝑅

𝜕𝑏
+

𝜕𝑅

𝜕𝑤

𝜕𝑤

𝜕𝑏
+

𝜕𝑅

𝜕𝑦

𝜕𝑦

𝜕𝑏
+

𝜕𝑅

𝜕𝑥

𝜕𝑥

𝜕𝑏
= 0

Structure:  𝑆 𝑤, 𝑦, 𝑥, 𝑏 = 0 →
𝑑𝑆

𝑑𝑏
=

𝜕𝑆

𝜕𝑏
+

𝜕𝑆

𝜕𝑤

𝜕𝑤

𝜕𝑏
+

𝜕𝑆

𝜕𝑦

𝜕𝑦

𝜕𝑏
+

𝜕𝑆

𝜕𝑥

𝜕𝑥

𝜕𝑏
= 0

➢ As the residual derivatives are zero, they can be multiplied with an adjoint vector and added to the objective 

function derivative.

𝒘: fluid state variables
𝒚: structural state variables
𝒙: mesh state variables
𝒃: design variables

𝝀: adjoint vector for flow state
𝝓: adjoint vector for structural state

𝑑𝐼

𝑑𝑏

=
𝜕𝐼

𝜕𝑏
+
𝜕𝐼

𝜕𝑤

𝜕𝑤

𝜕𝑏
+
𝜕𝐼

𝜕𝑦

𝜕𝑦

𝜕𝑏
+
𝜕𝐼

𝜕𝑥

𝜕𝑥

𝜕𝑏
+ 𝜆𝑇

𝜕𝑅

𝜕𝑏
+
𝜕𝑅

𝜕𝑤

𝜕𝑤

𝜕𝑏
+
𝜕𝑅

𝜕𝑦

𝜕𝑦

𝜕𝑏
+
𝜕𝑅

𝜕𝑥

𝜕𝑥

𝜕𝑏
+ 𝜙𝑇(

𝜕𝑆

𝜕𝑏
+
𝜕𝑆

𝜕𝑤

𝜕𝑤

𝜕𝑏
+
𝜕𝑆

𝜕𝑦

𝜕𝑦

𝜕𝑏
+
𝜕𝑆

𝜕𝑥

𝜕𝑥

𝜕𝑏
)

= Zero = Zero
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▣ Coupled Adjoint Analysis

➢ Rearranging the terms

➢ The arbitrary adjoint vector can be chosen to be independent of the derivative of state variables w.r.t. 

the design variables.

➢ The adjoint equation to be solved

➢ Total derivative of objective function w.r.t. design variables is

R : fluid residuals
S : Structural residuals
𝒘: fluid state variables
𝒚: structural state variables
𝒙: mesh state variables
𝒃: design variables

=0 =0

𝑑𝐼

𝑑𝑏
=
𝜕𝐼

𝜕𝑏
+ 𝜆𝑇

𝜕𝑅

𝜕𝑏
+ 𝜙𝑇

𝜕𝑆

𝜕𝑏

+
𝜕𝐼

𝜕𝑤
+ 𝜆𝑇

𝜕𝑅

𝜕𝑤
+ 𝜙𝑇

𝜕𝑆

𝜕𝑤

𝜕𝑤

𝜕𝑏
+ (

𝜕𝐼

𝜕𝑦
+ 𝜆𝑇

𝜕𝑅

𝜕𝑦
+ 𝜙𝑇

𝜕𝑆

𝜕𝑦
)
𝜕𝑦

𝜕𝑏

𝜕𝑅
𝜕𝑤
𝜕𝑆
𝜕𝑤

𝜕𝑅
𝜕𝑦
𝜕𝑆
𝜕𝑦

𝑇

𝜆

𝜙
= −

𝜕𝐼
𝜕𝑤
𝜕𝐼
𝜕𝑦

𝑑𝐼

𝑑𝑏
=
𝜕𝐼

𝜕𝑏
+
𝜕𝐼

𝜕𝑤

𝜕𝑤

𝜕𝑏
+
𝜕𝐼

𝜕𝑦

𝜕𝑦

𝜕𝑏
=
𝜕𝐼

𝜕𝑏
+ 𝜆𝑇

𝜕𝑅

𝜕𝑏
+ 𝜙𝑇

𝜕𝑆

𝜕𝑏

= Zero = Zer

o

Coupled Adjoint for Coupled Sensitivity Analysis
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Design Framework

Source: S. Choi, K. Lee, J.J. Alonso “Helicopter Rotor Design using a Time Spectral and Adjoint Based Method”, Journal 

of Aircraft, Vol. 51, No. 2, March-April, 2014, 
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• At each iteration, new control angles and aeroelastic deformation sh
ould be provided from the Comprehensive Analysis

• Simplifications for “aerodynamic design” 
- constant aeroelastic deformation, and constant shaft angle.
- only two constraints. 

Aero-Only Design at Forward Flight (Flight 8534 of UH-60A)

• Objective function : reduce Torque (     ).
• Constraint 1 : same Thrust (     ).
• Constraint 2 : same or less Drag Force (     ).

• A total of 4 harmonics (9 time instances) are used
• Using NPSOL (Nonlinear Programming SOLver).

   

CQ

   

CT

   

CD

Design condition: 
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Design variables 

19

• Chord length and position of leading edge / sweep at 84.7% and 94.2%, 100% = 6

• Twist angle at the 10 span locations = 10

• Airfoil camber/thickness changes at 10 locations around airfoil along 9 sections on 
the span (using Hicks-Henne bump functions) = 90 

• A total of 106 design variables chord length, sweep

Twist at 10 radial locations

Example of bump
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Sensitivity Analysis Results

▣ Sensitivity Analysis Results (Aero only)

➢ Object Function : Drag

Forward
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Advancing

Side
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Side
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6 7 8
95
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𝜕𝐼
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𝐷𝑟𝑎𝑔
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𝜕𝑆
𝜕𝑤

𝜕𝑅
𝜕𝑦
𝜕𝑆
𝜕𝑦

𝑇

𝜆

𝜙
= −

𝜕𝐼
𝜕𝑤
𝜕𝐼
𝜕𝑦

𝜕𝑅

𝜕𝑤
: (368,640 x 368,640) M

atrix

𝜓 = 0°

𝜓 = 40°

𝜓 = 80°

𝜓 = 120°

𝜓 = 160°

𝜓 = 200°

𝜓 = 320°

𝜓 = 280°

𝜓 = 240°
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Sensitivity Analysis Results

▣ Sensitivity Analysis Results (Aero only)

➢ Object Function : Lift 1

2

3

4
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𝜕𝐼
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𝜕𝑤
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𝑇

𝜆

𝜙
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Optimized Results

22

baseline

optimized
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• After 5 CFD/CSD coupling iterations.
CFD : Time-accurate, Navier-Stokes computation
CSD : UMARC (3 degree trim - thrust, rolling, pitching M constrained, shaft angle fixed)

flow

direction

CFD/CSD Coupled Validation

normal force (M2Cn)

chord force (M2Cc )

Aero-optimization validation
7.4% reduction in torque.
almost constant in thrust.
but 30% increase in rolling M.           
15% increase in pitching M.

CFD/CSD coupled 
5% decrease in torque.
Constant in thrust.
3% increase in rolling M.
2% increase in pitching M.

23
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Computational Modelling: Comprehensive Analysis (CA)

▣ UMARC : University of Maryland Advanced Rotorcraft Code [Ref.6]

UMARC (CA)

Aerodynamic Model

(lifting line theory + wake model)

Structural Model

(E-B beam model)
Flight Dynamics

Coupled Trim Analysis Stability Analysis
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Computational Modelling: Structures

▣ Coupled Trim Analysis Results (UMARC)

Iteration No.

Iteration No.

Iteration No.

Iteration No.

(deg.)

𝑐𝑡/𝜎: disc loading

𝜎: solidity

control angle: αs ϕs θ0 θ1c θ1s θtr
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Computational Modelling: Loosely Coupled FSI Analysis

▣ FSI Analysis Procedure

Initial Aerodynamic Force

Lifting Line Theory

Structural + Trim 

Analysis

Deformation(𝜹) : update CFD Grid

CFD Analysis

Pressure(𝒑) : update air loads

UMARC (CA)
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Computational Modelling: Loosely Coupled FSI Analysis

▣ FSI Analysis Results

Iteration No.

Azimuth Angle (𝝍)

Azimuth Angle (𝝍)

Azimuth Angle (𝝍)
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Sensitivity Analysis Results

▣ Coupled Sensitivity Analysis: Aero + Structure 

𝜕𝑅
𝜕𝑤
𝜕𝑆
𝜕𝑤

𝜕𝑅
𝜕𝑦
𝜕𝑆
𝜕𝑦

𝑇

𝜆

𝜙
= −

𝜕𝐼
𝜕𝑤
𝜕𝐼
𝜕𝑦

Aerodynamic Jacobian

Coupled Cross Jacobians Structural Jacobian

(368,640)

(3,348)

(368,640) (3,348)

✓
𝜕𝑅

𝜕𝑤
,
𝜕𝑆

𝜕𝑦
and 

𝜕𝑆

𝜕𝑤
are sparse matrices, 

𝜕𝑅

𝜕𝑦
is densely populated matrix

✓ Due to the large size of the adjoint matrix, GMRES, a Krylov subspace solver has been used to solve the system.

✓ This has been implemented using PETSC, a suite of scalable and parallel routines for the solution of large scale PDEs. 

✓ The above system takes around  ~1500 iterations with 600 restart iterations to converge
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Sensitivity Analysis Results

▣ Coupled Sensitivity Analysis: Aero + Structure 

▣ Future Design

I (objective function) = torque

C (constraints) = moments and thrust

design variable No.

69th design variabl

e

4

67
68

69
70

72 73

74

7571

76

I (objective function) = Sum of all displacement
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Conclusion

▣ Time spectral and adjoint-based method is effective for the design 

involving multiphysics problems.

▣ An accurate but efficient coupled sensitivity analysis method for rotor 

design is developed.

▣ Aerodynamics only and Coupled sensitivity analysis is performed and 

validated by comparing with FDM results.

▣ Fluid-Structure coupled adjoint-based sensitivity analysis will be used 

to optimize the shape of rotor blade.
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AMDL

Thank you for your attention !

33
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Adjoint based Sensitivity Analysis

▣ Coupled Adjoint Analysis

➢ Gradient computation using adjoint method for a coupled FSI problem

➢ Objective function: 𝐼 = 𝐼(𝑤, 𝑦, 𝑥, 𝑏)

➢ Total derivative of objective function w.r.t design variables
𝑑𝐼

𝑑𝑏
=
𝜕𝐼

𝜕𝑏
+
𝜕𝐼

𝜕𝑤

𝜕𝑤

𝜕𝑏
+
𝜕𝐼

𝜕𝑦

𝜕𝑦

𝜕𝑏
+
𝜕𝐼

𝜕𝑥

𝜕𝑥

𝜕𝑏

➢ State equations for fluid and structural system and their derivatives w.r.t design variables

Fluid:  𝑅 𝑤, 𝑦, 𝑥, 𝑏 = 0 →
𝑑𝑅

𝑑𝑏
=

𝜕𝑅

𝜕𝑏
+

𝜕𝑅

𝜕𝑤

𝜕𝑤

𝜕𝑏
+

𝜕𝑅

𝜕𝑦

𝜕𝑦

𝜕𝑏
+

𝜕𝑅

𝜕𝑥

𝜕𝑥

𝜕𝑏
= 0

Structure:  𝑆 𝑤, 𝑦, 𝑥, 𝑏 = 0 →
𝑑𝑆

𝑑𝑏
=

𝜕𝑆

𝜕𝑏
+

𝜕𝑆

𝜕𝑤

𝜕𝑤

𝜕𝑏
+

𝜕𝑆

𝜕𝑦

𝜕𝑦

𝜕𝑏
+

𝜕𝑆

𝜕𝑥

𝜕𝑥

𝜕𝑏
= 0

➢ As the residual derivatives are zero, they can be multiplied with an adjoint vector and added to the objective 

function derivative.

𝒘: fluid state variables
𝒚: structural state variables
𝒙: mesh state variables
𝒃: design variables

𝝀: adjoint vector for flow state
𝝓: adjoint vector for structural state

𝑑𝐼

𝑑𝑏
=
𝜕𝐼

𝜕𝑏
+
𝜕𝐼

𝜕𝑤

𝜕𝑤

𝜕𝑏
+
𝜕𝐼

𝜕𝑦

𝜕𝑦

𝜕𝑏
+
𝜕𝐼

𝜕𝑥

𝜕𝑥

𝜕𝑏
+ 𝜆𝑇

𝜕𝑅

𝜕𝑏
+
𝜕𝑅

𝜕𝑤

𝜕𝑤

𝜕𝑏
+
𝜕𝑅

𝜕𝑦

𝜕𝑦

𝜕𝑏
+
𝜕𝑅

𝜕𝑥

𝜕𝑥

𝜕𝑏
+ 𝜙𝑇(

𝜕𝑆

𝜕𝑏
+
𝜕𝑆

𝜕𝑤

𝜕𝑤

𝜕𝑏
+
𝜕𝑆

𝜕𝑦

𝜕𝑦

𝜕𝑏
+
𝜕𝑆

𝜕𝑥

𝜕𝑥

𝜕𝑏
)

= Zero = Zero
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Adjoint based Sensitivity Analysis

▣ Coupled Adjoint Analysis

➢ Rearranging the terms

➢ The arbitrary adjoint vector can be chosen to be independent of the derivative of state variables w.r.t. the 

design variables.

➢ The adjoint equation to be solved

➢ Total derivative of objective function w.r.t. design variables is

R : fluid residuals
S : Structural residuals
𝒘: fluid state variables
𝒚: structural state variables
𝒙: mesh state variables
𝒃: design variables

𝑑𝐼

𝑑𝑏
=
𝜕𝐼

𝜕𝑏
+ 𝜆𝑇

𝜕𝑅

𝜕𝑏
+ 𝜙𝑇

𝜕𝑆

𝜕𝑏

+
𝜕𝐼

𝜕𝑤
+ 𝜆𝑇

𝜕𝑅

𝜕𝑤
+ 𝜙𝑇

𝜕𝑆

𝜕𝑤

𝜕𝑤

𝜕𝑏
+ (

𝜕𝐼

𝜕𝑦
+ 𝜆𝑇

𝜕𝑅

𝜕𝑦
+ 𝜙𝑇

𝜕𝑆

𝜕𝑦
)
𝜕𝑦

𝜕𝑏

𝜕𝑅
𝜕𝑤
𝜕𝑆
𝜕𝑤

𝜕𝑅
𝜕𝑦
𝜕𝑆
𝜕𝑦

𝑇

𝜆

𝜙
= −

𝜕𝐼
𝜕𝑤
𝜕𝐼
𝜕𝑦

𝑑𝐼

𝑑𝑏
=
𝜕𝐼

𝜕𝑏
+
𝜕𝐼

𝜕𝑤

𝜕𝑤

𝜕𝑏
+
𝜕𝐼

𝜕𝑦

𝜕𝑦

𝜕𝑏
=
𝜕𝐼

𝜕𝑏
+ 𝜆𝑇

𝜕𝑅

𝜕𝑏
+ 𝜙𝑇

𝜕𝑆

𝜕𝑏

= Zero = Zero
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Derivation of Jacobian sub Matrices

▣
𝜕𝑅

𝜕𝑤
computed by differentiating the internal flux and boundary condition functions.

▣
𝜕𝑆

𝜕𝑦
calculated by differentiating structural equations of motion (S) with respect to structural state (y).

▣
𝜕𝑆

𝜕𝑤
calculated by differentiating structural equations of motion (S) with respect to fluid state (w) by 

using chain rule.

𝜕𝑅
𝜕𝑤
𝜕𝑆
𝜕𝑤

𝜕𝑅
𝜕𝑦
𝜕𝑆
𝜕𝑦

𝑇

𝜆

𝜙
= −

𝜕𝐼
𝜕𝑤
𝜕𝐼
𝜕𝑦

𝑆 = 𝜔𝐷𝑦 − 𝐴𝑦 − B𝑓
𝜕𝑆

𝜕𝑦
= 𝜔𝐷 − 𝐴

𝜕𝑅
𝜕𝑤
𝜕𝑆
𝜕𝑤

𝜕𝑅
𝜕𝑦
𝜕𝑆
𝜕𝑦

𝑇

𝜆

𝜙
= −

𝜕𝐼
𝜕𝑤
𝜕𝐼
𝜕𝑦

𝜕𝑆

𝜕𝑤
=
𝜕𝑆

𝜕𝑓

𝜕𝑓

𝜕𝑝

𝜕𝑝

𝜕𝑤
𝑆 = 𝜔𝐷𝑦 − 𝐴𝑦 − B𝑓,  

𝜕𝑆

𝜕𝑓
= −𝐵

𝜕𝑅
𝜕𝑤
𝜕𝑆
𝜕𝑤

𝜕𝑅
𝜕𝑦
𝜕𝑆
𝜕𝑦

𝑇

𝜆

𝜙
= −

𝜕𝐼
𝜕𝑤
𝜕𝐼
𝜕𝑦

𝜕𝑤 𝜕𝑅
differentiate central flux and dissipation

differentiate the contribution of boundary condition
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Derivation of Jacobian sub Matrices

▣
𝜕𝑅

𝜕𝑤
computed by differentiating the internal flux and boundary condition functions.

▣
𝜕𝑆

𝜕𝑦
calculated by differentiating structural equations of motion (S) with respect to structural state (y).

▣
𝜕𝑆

𝜕𝑤
calculated by differentiating structural equations of motion (S) with respect to fluid state (w) by 

using chain rule.

𝜕𝑅
𝜕𝑤
𝜕𝑆
𝜕𝑤

𝜕𝑅
𝜕𝑦
𝜕𝑆
𝜕𝑦

𝑇

𝜆

𝜙
= −

𝜕𝐼
𝜕𝑤
𝜕𝐼
𝜕𝑦

𝑆 = 𝜔𝐷𝑦 − 𝐴𝑦 − B𝑓
𝜕𝑆

𝜕𝑦
= 𝜔𝐷 − 𝐴

𝜕𝑅
𝜕𝑤
𝜕𝑆
𝜕𝑤

𝜕𝑅
𝜕𝑦
𝜕𝑆
𝜕𝑦

𝑇

𝜆

𝜙
= −

𝜕𝐼
𝜕𝑤
𝜕𝐼
𝜕𝑦

𝜕𝑆

𝜕𝑤
=
𝜕𝑆

𝜕𝑓

𝜕𝑓

𝜕𝑝

𝜕𝑝

𝜕𝑤
𝑆 = 𝜔𝐷𝑦 − 𝐴𝑦 − B𝑓,  

𝜕𝑆

𝜕𝑓
= −𝐵

𝜕𝑅
𝜕𝑤
𝜕𝑆
𝜕𝑤

𝜕𝑅
𝜕𝑦
𝜕𝑆
𝜕𝑦

𝑇

𝜆

𝜙
= −

𝜕𝐼
𝜕𝑤
𝜕𝐼
𝜕𝑦

𝜕𝑤 𝜕𝑅
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Derivation of Jacobian sub Matrices

▣
𝜕𝑅

𝜕𝑤
computed by differentiating the internal flux and boundary condition functions.

▣
𝜕𝑆

𝜕𝑦
calculated by differentiating structural equations of motion (S) with respect to structural state (y).

▣
𝜕𝑆

𝜕𝑤
calculated by differentiating structural equations of motion (S) with respect to fluid state (w) by 

using chain rule.

𝜕𝑅
𝜕𝑤
𝜕𝑆
𝜕𝑤

𝜕𝑅
𝜕𝑦
𝜕𝑆
𝜕𝑦

𝑇

𝜆

𝜙
= −

𝜕𝐼
𝜕𝑤
𝜕𝐼
𝜕𝑦

𝑆 = 𝜔𝐷𝑦 − 𝐴𝑦 − B𝑓
𝜕𝑆

𝜕𝑦
= 𝜔𝐷 − 𝐴

𝜕𝑅
𝜕𝑤
𝜕𝑆
𝜕𝑤

𝜕𝑅
𝜕𝑦
𝜕𝑆
𝜕𝑦

𝑇

𝜆

𝜙
= −

𝜕𝐼
𝜕𝑤
𝜕𝐼
𝜕𝑦

𝜕𝑆

𝜕𝑤
=
𝜕𝑆

𝜕𝑓

𝜕𝑓

𝜕𝑝

𝜕𝑝

𝜕𝑤
𝑆 = 𝜔𝐷𝑦 − 𝐴𝑦 − B𝑓,  

𝜕𝑆

𝜕𝑓
= −𝐵

𝜕𝑅
𝜕𝑤
𝜕𝑆
𝜕𝑤

𝜕𝑅
𝜕𝑦
𝜕𝑆
𝜕𝑦

𝑇

𝜆

𝜙
= −

𝜕𝐼
𝜕𝑤
𝜕𝐼
𝜕𝑦

𝜕𝑤 𝜕𝑅
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Derivation of Jacobian sub Matrices

▣
𝜕𝑅

𝜕𝑤
computed by differentiating the internal flux and boundary condition functions.

▣
𝜕𝑆

𝜕𝑦
calculated by differentiating structural equations of motion (S) with respect to structural state (y).

▣
𝜕𝑆

𝜕𝑤
calculated by differentiating structural equations of motion (S) with respect to fluid state (w) by 

using chain rule.

𝜕𝑅
𝜕𝑤
𝜕𝑆
𝜕𝑤

𝜕𝑅
𝜕𝑦
𝜕𝑆
𝜕𝑦

𝑇

𝜆

𝜙
= −

𝜕𝐼
𝜕𝑤
𝜕𝐼
𝜕𝑦

𝑆 = 𝜔𝐷𝑦 − 𝐴𝑦 − B𝑓
𝜕𝑆

𝜕𝑦
= 𝜔𝐷 − 𝐴

𝜕𝑅
𝜕𝑤
𝜕𝑆
𝜕𝑤

𝜕𝑅
𝜕𝑦
𝜕𝑆
𝜕𝑦

𝑇

𝜆

𝜙
= −

𝜕𝐼
𝜕𝑤
𝜕𝐼
𝜕𝑦

𝜕𝑆

𝜕𝑤
=
𝜕𝑆

𝜕𝑓

𝜕𝑓

𝜕𝑝

𝜕𝑝

𝜕𝑤
,

p = 𝛾 − 1 𝑤5−
1

2𝑤1
𝑤2

2 + 𝑤3
2 + 𝑤4

2 , 𝑤 =

𝑤1

𝑤2
𝑤3

𝑤4
𝑤5

=

𝜌
𝜌𝑢
𝜌𝑣
𝜌𝑤
𝜌𝐸

δp = 𝛾 − 1 δ𝑤5+
1

2𝑤1
2 𝑤2

2 +𝑤3
2 +𝑤4

2 δ𝑤1 −
1

𝑤1
𝑤2𝛿𝑤2 + 𝑤3𝛿𝑤3 +𝑤4𝛿𝑤4

𝜕𝑅
𝜕𝑤
𝜕𝑆
𝜕𝑤

𝜕𝑅
𝜕𝑦
𝜕𝑆
𝜕𝑦

𝑇

𝜆

𝜙
= −

𝜕𝐼
𝜕𝑤
𝜕𝐼
𝜕𝑦

𝜕𝑤 𝜕𝑅
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Derivation of Jacobian sub Matrices

▣ The fluid residual, R, is not explicitly dependent on the structural state, y, but through the wall 

boundary condition.

𝜕𝑅
𝜕𝑤
𝜕𝑆
𝜕𝑤

𝜕𝑅
𝜕𝑦
𝜕𝑆
𝜕𝑦

𝑇

𝜆

𝜙
= −

𝜕𝐼
𝜕𝑤
𝜕𝐼
𝜕𝑦

sxy
vx xs R

x v s

x v s

s x xR R

y s x x y

   
=

    

𝑦 structural state (deflection)

𝑥𝑠 surface mesh

𝑥𝑣 volume mesh

𝑠𝑥 mesh metrics

R  aero residual

𝑥𝑣𝑥𝑠
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Sensitivity Analysis Results

▣ Sensitivity Analysis Results (Aero only)

➢ Comparison with FDM (Finite Difference Method) analysis

𝑑𝐼

𝑑𝑏
=
𝜕𝐼

𝜕𝑏
+
𝜕𝐼

𝜕𝑤

𝜕𝑤

𝜕𝑏
=
𝜕𝐼

𝜕𝑏
+ 𝜆

𝜕𝑅

𝜕𝑏

𝜕𝐼

𝜕𝑏
𝑑𝐼

𝑑𝑏𝐹𝐷𝑀

𝑑𝐼

𝑑𝑏𝐴𝐷𝐽

𝜕𝐼

𝜕𝑏

𝑑𝐼

𝑑𝑏𝐹𝐷𝑀

𝑑𝐼

𝑑𝑏𝐴𝐷𝐽Azimuth Angle (𝝍) Azimuth Angle (𝝍)
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Sensitivity Analysis Results

▣ Sensitivity Analysis Results (Aero only)

➢ Comparison with FDM (Finite Difference Method) analysis (updated after dissertation proposal)

𝜕𝐼

𝜕𝑏
𝑑𝐼

𝑑𝑏𝐹𝐷𝑀

𝑑𝐼

𝑑𝑏𝐴𝐷𝐽

Azimuth Angle (𝝍)

𝜕𝐼

𝜕𝑏
𝑑𝐼

𝑑𝑏𝐹𝐷𝑀

𝑑𝐼

𝑑𝑏𝐴𝐷𝐽(𝑂𝐿𝐷)

𝑑𝐼

𝑑𝑏𝐴𝐷𝐽(𝑁𝐸𝑊)

Azimuth Angle (𝝍)
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Sensitivity Analysis Results

▣ Sensitivity Analysis Results (Aero only)

➢ Comparison with FDM (Finite Difference Method) analysis (updated after dissertation proposal)

𝜕𝐼

𝜕𝑏

𝑑𝐼

𝑑𝑏𝐹𝐷𝑀

𝑑𝐼

𝑑𝑏𝐴𝐷𝐽

Azimuth Angle (𝝍)

𝜕𝐼

𝜕𝑏

𝑑𝐼

𝑑𝑏𝐹𝐷𝑀
𝑑𝐼

𝑑𝑏𝐴𝐷𝐽(𝑂𝐿𝐷)
𝑑𝐼

𝑑𝑏𝐴𝐷𝐽(𝑁𝐸𝑊)

Azimuth Angle (𝝍)
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Sensitivity Analysis Results

▣ Finite Difference Method

➢ Step Size Study (3 time instances)

LIFTDRAG MOMENT

1st Time Instance

2nd Time Instance

3rd Time Instance

delP= 0.1 1.0 10.0 0.1 1.0 10.0

𝑓′ 𝑥 ≈
𝑓 𝑥 + ∆𝑥 − 𝑓(𝑥)

∆𝑥
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Sensitivity Analysis Results

▣ Finite Difference Method

➢ Step Size Study (3 time instances)
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