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Konkuk University (KU)
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» Home of BK21 ST-IT fusion program
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Konkuk University (KU):
Founded in 1946; One of the leading private universities in Korea
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- Located in the northeastern region of Seoul i _
- About 25k students enrolled, including 3k graduate students High speed shock tube
- Over 700 faculty members (M =2.5)

Intelligent Rotorcraft Structures Lab




KU Int. Rotorcraft Technology (IRT) Group

* IRT group members of Int. R&D Hub program sponsored by KRF (2006 — 2013)
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Institute of Intelligent Vehicle and System Technology
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KU Int. Rotorcraft Technology (IRT) Group Activities

*» Major research activites of KU IRT group

- Home of national BK21 & IRH programs sponsored by NRF Korea (2006- 2013)

- German DLR - Konkuk MoU research (2008 - 2013)

- Active participants of Int. HART Il Workshop (2008 - 2012)

- One of STAR (Smart Twisting Active Rotor) int. consortium project members (since 2008)
- Founding member of international meetings such as Rotor Korea (2007, 2008) and ARF
- Development of various rotorcraft software tools: KFLOW, HETLAS, Ksec2D, etc.

- Establishment of high precision numerical schemes such as CFD/CSD coupling for

HART I/ll validation
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Summary of Rotorcraft Aeromechanics
Research Outcomes at KU
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HART | Blade Property Test

Motivation: HART-| Spare

- HART I rotor test conducted in 1994

- No systematic measured blade
property data available so far

- All blades damaged at a follow-on test

Approaches:

- In collaboration with NASA, DLR, KU

- Use the original blade set tested in
DNW (1994)

- Well-established test techniques
employed

- Destructive-type of test techniques
adopted

Outcomes:

- Property table completed for HART |
blades and documented as NASA tech
report (NASA/CR-2012-216039)

- Property data released in JAHS 2013

HART-I Red

HART-I Blue

Mirror method for flap bending
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3 point bending for chord stiffness
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Elastic flap

motion:

Elastic torsion

motion:

« Jung, S.N,, You, Y. H.,, Lau, B., Johnson, W., and Lim, J. W., "Evaluation of Rotor Structural and Aerodynamic Loads Using Measured Blade Properties,"
Journal of the American Helicopter Society, Vol. 58, No. 4, Oct. 2013

* Jung, S. N, and Lau, B., “Determination of HART | Rotor Blade Structural Properties by Laboratory Testing," NASA CR-2012-216039, Aug. 2012.
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Result: HART | Blade Property Test
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HART |l Blade Property Test

Motivation

- No measured properties available
for HART Il blades

- Reliable measured properties
needed for accurate predictions

Approaches:

- In collaboration with NASA, DLR, KU
- Use the original set of HART Il
blades tested in DNW (2001) ‘. ¥
- Non-destructive test techniques (x- | - oray T
ray CT-scan plus 2D FE section B cotoctor . =0
analysis system Ksec2D) adopted

- Assess measurement quality

Outcomes:

- Updated structural property data of
HART Il blades released
- Documented in journal papers: M Flap
AlIAA J & Comp Str (2015) bending
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Result: HART Il Blade Property Test
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Jung, S. N., M. Dhadwal, Kim, Y. W., Kim, J. H., and Riemenschneider, J., "Cross-section Constants of Composite Blades Using Computed Tomography
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Validation of HART | Rotor

- HART | test performed at DNW in 1994

- First international joint effort to apply HHC
technology to reduce rotor noise/vibration

- Measured blade properties available due to the
recent measurement campaign

Approaches:

» Modern CFD/CSD coupling used

- Both isolated rotor & rotor-fuselage models
used

- In CFD, up-to-date space/time marching
schemes adopted for high precision results

- CFD/CSD coupled airloads results showed
excellent correlation with the test data

- BVI characteristic of HART | data captured
precisely

- Structural loads correlation showed slight
improvements

No. of air stations

No. of strain gages

HART Il

Shank models
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Isolated rotor: 20.9M cells
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Rotor-fuselage: 37.5M cells
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Section
airloads:

Harmonic
analysis on
M2C,,

(at 0.87R):
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Validation of HART | Test Data

. Measured (75%R)

CAMRAD Il with free wake
CAMRAD II/KFLOW (isolated rotor)
CAMRAD II/KFLOW (rotor-fuselage)

.......
h . .
......
. \ .
-------

o

180

90
Azimuth anlge, deg

. Measured (87% R)

CAMRAD Il with free wake
CAMRAD II/KFLOW (isolated rotor)
CAMRAD II/KFLOW (rotor-fuselage)

v
o

....
-----

=T T
#

-~

s

.

o
©o
o

Azimuth angle, deg

Low harmonic (0 to 10P)

0.2

0.15

0.05

0.04

0.02

-0.02

. Measured (87%R)

CAMRAD Il with free wake
CAMRAD II/KFLOW (isolated rotor)
CAMRAD II/KFLOW (rotor-fuselage)

180

90
Azimuth anlge, deg

. Measured (87% R)

CAMRAD Il with free wake
CAMRAD II/KFLOW (isolated rotor)
CAMRAD II/KFLOW (rotor-fuselage)

90 180
Azimuth angle, deg

High harmonic (11P and higher) Intalllgent Roftorcraf

0.2

0.15

Measured (97%R)

CAMRAD Il with free wake
CAMRAD II/KFLOW (isolated rotor)
CAMRAD II/KFLOW (rotor-fuselage)

0 90 i 180 270 360
Azimuth anlge, deg
Isolated
rotor model



Validation of HART | Test Data
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* "Improved Rotor Aeromechanics Predictions using a Fluid-Structure Interaction Approach,"” Aerospace Science and Technology, Vol. 73, No. 2, Feb. 2018
« "Data Transfer Schemes in Rotorcraft Fluid-Structure Interaction Predictions,” International Journal of Aerospace Engineering, Vol. 2018, Mar. 2018
« "Comprehensive Aeromechanics Predictions on Air and Structural Loads of HART | Rotor," Int. J. of Aeronautical and Space Sciences, Vol. 18, No. 1, 2017



Validation of HART Il Rotor

Motivation:

« HART Il test performed at DNW in 2001

» Wind tunnel test data open to public in 2006

» High resolution test data used to demonstrate
the prediction capability

Approaches:

« Step-by-step approaches taken for the validation

of measured data

1) CSD approach: CAMRAD Il alone or with prescribed
(CFD or measured) airloads

2) CFD approach: KFLOW with measured blade motions

3) Loose CFD/CSD coupled approach

QOutcomes:

» Code-to-code validation proved efficient for
improved correlation of HART Il data

» Mechanism of BVI noise reduction via HHC
inputs explained

» Loose CFD/CSD coupling algorithm shown to be
highly reliable for aeromechanics predictions
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Validation of Section Airloads
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Validation of Blade Elastic Motions
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Validation of Tip Vortex Trajectories
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"Modern Computational Fluid Dynamics/Structural Dynamics Simulation for a Helicopter in Descent,” Journal of Aircraft, Vol. 50, No. 5, 2013
"Loose Fluid-Structure Coupled Approach for a Rotor in Descent Incorporating Fuselage Effects,” Journal of Aircraft, Vol. 50, No. 4, 2013
"Correlation of Aeroelastic Responses and Structural Loads for a Rotor in Descending Flight,” Journal of Aircraft, Vol. 49, No. 2, 2012
"Comprehensive Code Validation on Airloads and Aeroelastic Responses of the HART Il Rotor,"” Int. J. of Aeronautical and Space Sciences, Vol. 11, No. 2, 2010

ffffffffff - - - - = = = = e e T I e i B
| | | | | |
| | | | | |
| | | | | |
=70° =20° . . =70° =20°
| v v | Advancing side | v v |
1 1 2.2 1 : 1
thm) thm)
(a) BL case (b) MN case
| | | |
I I < Measured Data I I < Measured Data
freestream ‘ ‘ ----A--- |solated Rotor freestream ‘ ‘ ——8—— Rotor + Fuselage
- : : ——@—— Rotor + Fuselage - : : ‘
e S e [ e e
Pad]  [pa5 1 . [Paa P45 P46 :
P46 [ | [ [
[ | | 1| P47
2
,,,,,,,,,, L T R X 1Y e e T =
| | | | | |
| | | | | |
= 20° =70° . . = 20° =70°
| v=200 0 w=T0 | Retreating side | w=20" 0 w=T0 |
-1 1 2-2 -1 1




International HART [l Workshop

= 1st|nt. HART Il Workshop started: Sept. 2005 Participating Parter Patner CFD code CSD code
organizations for label
. . . )
HART Il t_est d_ata opened to public: 3 test points in joint workshop: Py S ——
descending flight flightdynamics Dir.
) US Army Aero- AFDD-2  HELIOS RCAS
- Test data points: BL, MN, MV (at p = 0.15) flightdynamics Dir.
) . . i Qe LG NASA-Langley NL-1 OVERFLOW CAMRADII
- Data released: Blade motions, Airloads, Rotor trim, NASA-Langley N2 FUN3D CAMRADII
Acoustics, PIV wake, Flow visualization for descending Georgia Institute of GIT-1  FUN3D DYMORE4
ﬂl h t Technology
g Georgia Institute of GIT-2 GENCAS DYMORE2
. : Technology
|
Workshop held biannually at AHS & ERF until 2012 GENCAS Konkuk University . KLOW  CAMRADII
University of Maryland UMD TURNS UMARC
Invitation to the 1st International HART Il Workshop |HART Il Workshop Database : _ German Aerospace Center DLR  N/A S4
at the 31t European Rotorcraft Forum, Florence, Italy, Sept.12, 2005, 8-12am ftp://HART-li@ftp.dIr.de ; )
Organized by DLR, ONERA, NASA, AFDD, DNW S Password: HART-I , i
* Higher Harmonic Control - o
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* Flow visualization 2 > B et il 2 g5 1 0 0.02 |
+ 3C-PIV wake data TR \W s 5
’ . > o P ‘E % 0.01 |
- Point of contact: S 00 1 . = 0.00 | A
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Casey L. Burley 05 =< < -0.02
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Joint workshop held in AHS Forum, Fort Worth, TX, May 1-3, 2012



DLR-KU MoU Research

= To establish an int. collaboration

» To broaden the technology base by
increasing fundamental knowledge on
helicopter aeromechanics area

= MoU began in Apr. 2008 for 6 years

= Consisted of 2+ tasks: rotor
aeromechanics, dynamic stall, and
information exchange (rotary UAV)

= Meetings held twice per year at the other
organization

= Points of contact: Sung N. Jung (KU),
Berend G. van der Wall (DLR)

Outcomes:

» S4-KFLOW coupling attempted
= Bound meeting minutes (11 meeting volumes)
» 1 journal papers and 7 conference papers

KU 5s
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Konkuk/DLR MoU
on Helicopter Aeromechanics

Task | -1 Aeromechanics on: 7 semi-annual Meeting
Various Rotorcraft Activities Sept. 8-9, 2011
Task | - 2 Aeromechanics on: \’Q,
STAR/HART Blades
Task I Dynamic Stall: » ~20
CFD prediction and validation '
UAV Activities l

Potential or other areas (e.g., FBW)

Task }

KARI Rotorcraft Activities

@ Date : February 6(Mon)~7(Tue), 2012 @ Place : Eng, Bd.-B 558-1, Konkuk Univ., Korea
4 Sponsor : KICOS, INVEST, BK21 Education Program of Sl Fusion



STAR (smart Twisting Active Rotor) INnt. Consortium Project

SPR marker

- Reduce noise/vibration with
improved performance via ATR
concept (post-decessor of HART II)
- Realize active rotor technology

LED camera

German DLR / French ONERA
US Army AFDD & NASA Ames
Korea Konkuk Univ. & KARI STAR hover test, 2013
Japan JAXA

UK DSTL & Univ. of Glasgow

High voltage amplifiers Blade tip LED

2 | - Hover, Low speed descent
— 0O . .
=%=4 | - Cruise/high speed SFRP 5K crmp opar .
=l |- High load, High p (at 50% RPM) . i P I
(@] “Pressure ,Strain ga”gem
®Y | - Speed/thrust/phase sweep bles /cables p
— + Resin
Mose weight MFC acﬁator Foam
o » Phase I: Launched at May 2009
§ - Phase II: Resumed in 2018
< - Wind tunnel test planned: Sept. 2024
2 at DNW, Netherlands
« Ahn, J. H., Hwang, H. J., Jang, S., Jung, S. N., Kalow, S., and Keimer, R., "X-ray Computed Tomography Method for Macroscopic
SRR Structural Property Evaluation of Active Twist Composite Blades," Aerospace, Vol. 8, Nov. 2021



Q&A

Thank you!

Contact: snhjung@konkuk.ac.kr

Intelligent Rotorcraft Structures Lab
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