

超軽量材料の開発と航空分野への展開

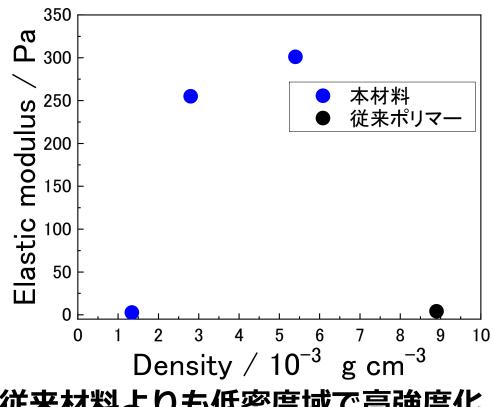
東海国立大学機構 名古屋大学 大学院工学研究科化学システム工学専攻

上野智永

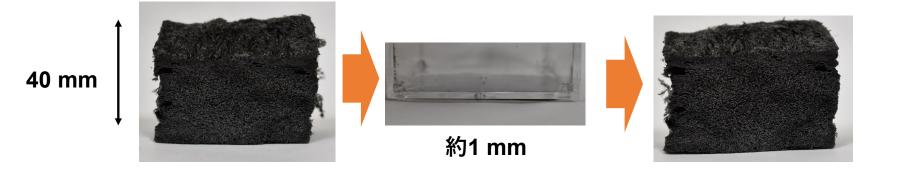
超軽量領域 (10 mg·cm⁻³以下)に挑戦

目的

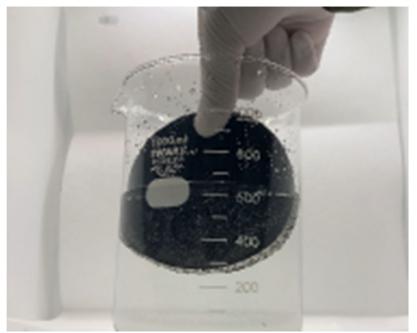
究極の超軽量材料で, ソラ(宇宙・空)の新時代を切り拓く


2013年~

究極の超軽量材料は空気より軽く空気に浮く


桜×空中浮遊

従来材料よりも低密度域で高強度化

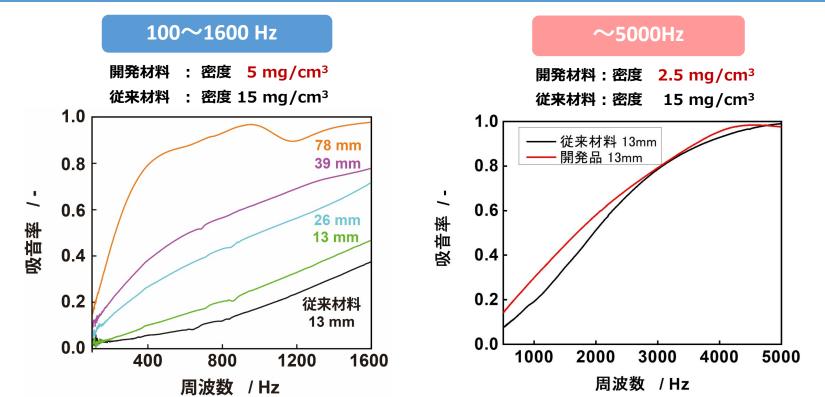

機械特性 一圧縮回復特性一

密度が極めて低いので97%以上の圧縮も可能

耐水性

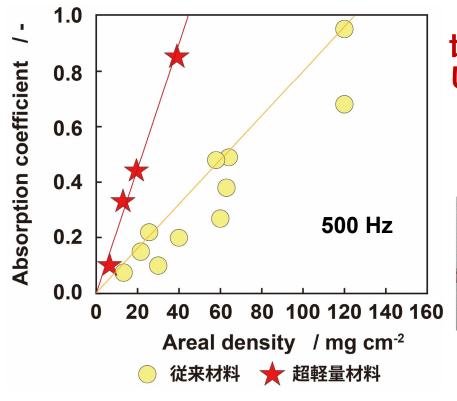
耐水性を有する

スケールアップ



30 cm×45 cm ×1 cm

試作サンプル


アプリケーション

項目	音	電磁波	熱
特徴	最軽量 吸音材	5G/6G対応 電磁波吸収材	軽量 断熱材
適用先	空モビリティ 航空機 自動車	人工衛星 ドローン	ロケット
支援	2021 〜: NEDO先導研究 2022〜: JAXA航空イノ ベーションチャレンジ	2020~JAXA宇宙探査ハブ	2018〜JAXA宇宙探査ハブ

軽量かつ高い吸音率. 特に100Hz以下での高い吸音率に特徴がある

既存材料との吸音率比較およびその他性能 12

世界最軽量かつ500Hz周辺の音に対し高い吸音率を示す。

ハンドリング性

次世代空モビリティの普及と社会受容性の確保

普及にあたり社会受容性の確保が課題となる

『内』『外』の騒音問題

『外部』

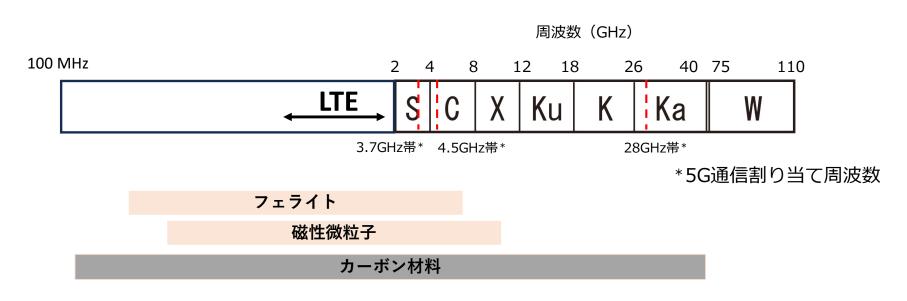
プロペラやモーターから発する音による『周囲』への騒音問題

『内部』

プロペラから発する音による 『乗客』への騒音問題

社会的受容性確保のため外部への<mark>騒音対策</mark>が不可欠 コックピット内部への騒音対策も必要

ドローンへの装着(材料イメージ)

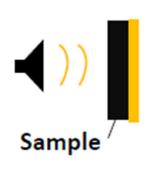


本体200g 超軽量部品10g

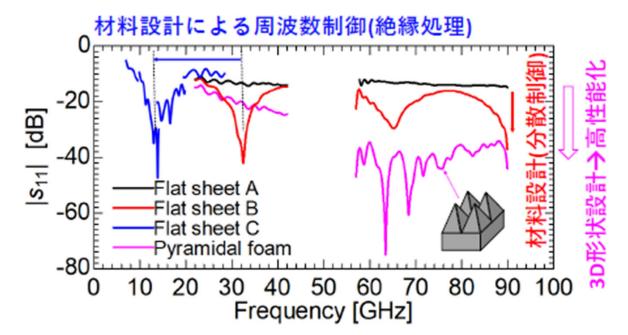
超軽量材料のみで、プロペラを囲む部品を作製

形状・構造を維持できる

5G / 6G 次世代通信



通信密度の向上等を目指して,使用される周波数が高周波数帯側へ移行


GHz帯において幅広い周波数帯の電磁干渉を対策できる 電磁波遮蔽・吸収材料が求められている

電磁波吸収性能のチューニング

導電率および誘電率制御による電磁波遮蔽吸収性能のチューニング

- · 7 mm以下
- ・CNTのみ (磁性材料等なし)

10GHz~100GHz

出典:東北大学 室賀

共同研究成果

株式会社ソラマテリアル

2024年4月設立 本店: Station AI

VISION

マテリアルで ソラ を身近に

MISSION

超軽量材料で、航空宇宙開発における技術的ボトルネックを解消する

まとめ

ソラへの展開を目指し,

密度 0.5mg/cm³~10mg/cm³

(空気密度×0.5 ~ 空気密度×10)

の超軽量機能材料の開発を進めてきた.

吸音・遮音、電磁波、熱のマネジメントに有効な材料

今後, 航空宇宙分野の皆様とより連携し, 具体的な適用先の発掘と技術開発を進めていきたい.